
Package: imagine (via r-universe)
September 6, 2024

Type Package
Title IMAGing engINEs, Tools for Application of Image Filters to Data

Matrices
Version 2.1.0.9000
Date 2024-01-09

URL https://github.com/LuisLauM/imagine

BugReports https://github.com/LuisLauM/imagine/issues

Maintainer Wencheng Lau-Medrano <luis.laum@gmail.com>

Description Provides fast application of image filters to data
matrices, using R and C++ algorithms.

License GPL (>= 2)
LazyData TRUE
Depends R (>= 3.1.0)
Imports Rcpp, RcppArmadillo
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.2.3
Suggests knitr, rmarkdown
VignetteBuilder knitr
Encoding UTF-8
Repository https://luislaum.r-universe.dev
RemoteUrl https://github.com/luislaum/imagine
RemoteRef HEAD
RemoteSha 8405148fad7a8f8e3fcc42f9c87fc24838f2e67e

Contents
agenbagFilters . 2
contextualMF . 3
convolution2D . 4
meanFilter . 5
wbImage . 6

1

https://github.com/LuisLauM/imagine
https://github.com/LuisLauM/imagine/issues

2 agenbagFilters

Index 8

agenbagFilters Performs algorithms from Agenbag et al. (2003)

Description

This function performs two (gradient) calculation approaches for SST, as outlined in the paper by
Agenbag et al. (2003).

Usage

agenbagFilters(X, algorithm = c(1, 2), ...)

Arguments

X A numeric matrix used as main input.

algorithm integer specifying the type of method that will be used. See Details.

... Not used.

Details

Section 2.2.4 of the paper by Agenbag et al. (2003) introduces the following two methods:

Method 1: Based on the equation

Yi,j =
√
(Xi+1,j −Xi−1,j)2 + (Xi,j+1 −Xi,j−1)2

where Yi,j represents the output value for each Xi,j pixel value of a given X matrix.

Method 2: the standard deviation in a 3x3 pixel area centered on position (i, j).

As outlined in the original study, this method conducts searches within a 1-pixel vicinity of each
point. For method 1, it only returns a value for points where none of the four involved values are
NA. Conversely, for method 2, the standard deviation calculation is performed only for points where
at least 3 non-NA values are found in the 3x3 neighborhood.

Value

agenbagFilters returns a matrix object with the same dimensions of X.

References

Agenbag, J.J., A.J. Richardson, H. Demarcq, P. Freon, S. Weeks, and F.A. Shillington. "Estimating
Environmental Preferences of South African Pelagic Fish Species Using Catch Size- and Remote
Sensing Data". Progress in Oceanography 59, No 2-3 (October 2003): 275-300. (doi:10.1016/
j.pocean.2003.07.004).

https://doi.org/10.1016/j.pocean.2003.07.004
https://doi.org/10.1016/j.pocean.2003.07.004

contextualMF 3

Examples

data(wbImage)

Agenbag, method 1
agenbag1 <- agenbagFilters(X = wbImage, algorithm = 1)

Agenbag, method 2
agenbag2 <- agenbagFilters(X = wbImage, algorithm = 2)

Plotting results
par(mfrow = c(3, 1), mar = rep(0, 4))

Original
image(wbImage, axes = FALSE, col = gray.colors(n = 1e3))

Calculated
cols <- hcl.colors(n = 1e3, palette = "YlOrRd", rev = TRUE)
image(agenbag1, axes = FALSE, col = cols)
image(agenbag2, axes = FALSE, col = cols)

contextualMF Performs Contextual Median Filter

Description

This function implements the Contextual Median Filter (CMF) algorithm, which was first described
by Belkin & O’Reilly (2009), following the pseudocode provided in their paper.

Usage

contextualMF(X)

Arguments

X A numeric matrix object used for apply filters.

Details

Following the definition of CMF, since imagine v.2.0.0, times argument will not be available any-
more.

imagine offers the CMF algorithm but for the using to find out oceanographic fronts, it is recom-
mended to see and use the functions of the grec package.

Value

contextualMF returns a matrix object with the same dimensions of X.

https://CRAN.R-project.org/package=grec

4 convolution2D

References

Belkin, I. M., & O’Reilly, J. E. (2009). An algorithm for oceanic front detection in chlorophyll and
SST satellite imagery. Journal of Marine Systems, 78(3), 319-326 (doi:10.1016/j.jmarsys.2008.11.018).

Examples

data(wbImage)

Agenbag, gradient algorithm 1
cmdOut <- agenbagFilters(X = wbImage, algorithm = 1)

image(cmdOut)

convolution2D Make convolution calculations from numeric matrix

Description

This function takes a matrix object, and for each cell multiplies its neighborhood by the kernel.
Finally, it returns for each cell the mean of the kernel-weighted sum.

Usage

convolution2D(X, kernel, times = 1, normalize = FALSE)

convolutionQuantile(X, kernel, probs, times = 1, normalize = FALSE)

convolutionMedian(X, kernel, times = 1)

Arguments

X A numeric matrix object used for apply filters.

kernel A little matrix used as mask for each cell of X.

times How many times do you want to apply the filter?

normalize logical indicating if results will (or not) be normalized. See details.

probs numeric vector of probabilities with values in [0,1].

Details

Convolution is a mathematical operation that combines two arrays of numbers to produce an array
of the same structure. The output will consist of only valid values, meaning those where both arrays
have non-missing data. Consequently, any missing values (NAs) in the input matrix will propagate
outwards to the extent of the convolution kernel.

Through normalization, the output of each convolution window is scaled by dividing it by the sum
of the absolute values of the kernel (sum(abs(as.numeric(kernel))), disabled by default).

https://doi.org/10.1016/j.jmarsys.2008.11.018

meanFilter 5

Value

convolution2D returns a matrix object with the same dimensions of X.

convolutionQuantile uses the kernel but, for each cell, it returns the position of quantile ’probs’
(value between 0 and 1).

convolutionMedian is a wrapper of convolutionQuantile with probs = 0.5.

Examples

Generate example matrix
nRows <- 50
nCols <- 100

myMatrix <- matrix(runif(nRows*nCols, 0, 100), nrow = nRows, ncol = nCols)
kernel <- diag(3)

Make convolution
myOutput1 <- convolution2D(myMatrix, kernel)
myOutput2 <- convolutionQuantile(myMatrix, kernel, probs = 0.7)

Plot results
par(mfrow = c(2, 2))
image(myMatrix, zlim = c(0, 100))
image(myOutput1, zlim = c(0, 100))
image(myOutput2, zlim = c(0, 100))

meanFilter Make a 2D filter calculations from numeric matrix

Description

This functions take a matrix object, and for each cell calculate mean, median or certain quantile
around a squared/rectangular neighborhood.

Usage

meanFilter(X, radius, times = 1)

quantileFilter(X, radius, probs, times = 1)

medianFilter(X, radius, times = 1)

Arguments

X A numeric matrix object used for apply filters.

radius Size of squared or rectangular kernel to apply median. See Details.

times How many times do you want to apply the filter?

probs numeric vector of probabilities with values in [0,1].

6 wbImage

Details

radius must be defined as a 2-length numeric vector specifying the number of rows and columns
of the window which will be used to make calculations. If the length of radius is 1, the window will
be a square.

Functions use C++ algorithms for running some statistical calculations. The mean is far obvious,
however, there are several ways to perform quantiles. quantileFilter function uses arma::quantile:
a RcppArmadillo function, which is equivalent to use R quantile funtion with type = 5.

medianFilter is a wraper of quantileFilter, so the same observations are applied to it.

Value

A matrix object with the same dimensions of X.

quantileFilter don’t use a kernel but, for each cell, it returns the position of quantile ’probs’
(value between 0 and 1).

medianFilter is a wrapper of quantileFilter with probs = 0.5.

Examples

Generate example matrix
nRows <- 50
nCols <- 100

myMatrix <- matrix(runif(nRows*nCols, 0, 100), nrow = nRows, ncol = nCols)
radius <- 3

Make convolution
myOutput1 <- meanFilter(X = myMatrix, radius = radius)
myOutput2 <- quantileFilter(X = myMatrix, radius = radius, probs = 0.1)
myOutput3 <- medianFilter(X = myMatrix, radius = radius)

Plot results
par(mfrow = c(2, 2))
image(myMatrix, zlim = c(0, 100), title = "Original")
image(myOutput1, zlim = c(0, 100), title = "meanFilter")
image(myOutput2, zlim = c(0, 100), title = "quantileFilter")
image(myOutput3, zlim = c(0, 100), title = "medianFilter")

wbImage Data matrix to be used as example image.

Description

matrix object containing numeric data to plot a image. The photo was taken by the author on 2016.

Usage

wbImage

https://arma.sourceforge.net/docs.html#quantile

wbImage 7

Format

A matrix with dimensions 1280x720.

Index

∗ datasets
wbImage, 6

agenbagFilters, 2

contextualMF, 3
convolution2D, 4
convolutionMedian (convolution2D), 4
convolutionQuantile (convolution2D), 4

meanFilter, 5
medianFilter (meanFilter), 5

quantile, 6
quantileFilter (meanFilter), 5

wbImage, 6

8

	agenbagFilters
	contextualMF
	convolution2D
	meanFilter
	wbImage
	Index

